LJ的Blog

学海无涯苦做舟

0%

View的工作流程——layout&draw

ViewGroup的measure流程

上一篇View的工作流程——measure流程中了解到了View的measure与ViewGroup的measure流程有密不可分的联系,这次就把View的笔记做完。

ViewGroup作为容器除了完成自己的measure过程以外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个过程。ViewGroup是一个抽象类没有重写onMeasure()方法,但是它提供了一个measureChildren方法。这个方法会遍历View去测量他们自身。

1
2
3
4
5
6
7
8
9
10
11
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec){
final int size = mChildrenCount;
final View[] children = mChildren;
//对子元素遍历
for (int i = 0; i < size; ++i) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
measureChild(child, widthMeasureSpec, heightMeasureSpec);
}
}
}

从上面的代码来看会对满足条件view调用measureChild方法,跟进去看看这个方法:

1
2
3
4
5
6
7
8
9
10
11
12
protected void measureChild(View child, int parentWidthMeasureSpec,
int parentHeightMeasureSpec) {
//拿到子元素的LayoutParams
final LayoutParams lp = child.getLayoutParams();
//通过getChildMeasureSpec()创建MeasureSpec
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom, lp.height);
//将创建的MeasureSpec传递给子元素
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

从上面的代码可以看到首先会拿到子元素的LayoutParams,然后通过getChildMeasureSpec方法来创建子元素的MeasureSpec,这个方法在前一篇中有过介绍,这里就不多赘述了。最后会调用子元素的measure方法并将创建的MeasureSpec传递给子元素。在这里就不具体结合实现onMeasure()的ViewGroup的子类来分析了,留待以后对ViewGroup进行更详细的学习的时候再说。

layout过程

layout过程主要涉及了两个方法,layout()和onLayout()。layout方法为view和它所有的子元素分配尺寸和位置。layout是Android布局机制(layout mechanism)的第二阶段。在这个阶段,每个parent对他的所有子元素都要调用layout方法去设置他们的位置。子类(派生类)不应该复写这个方法,有子元素的子类应该复写onLayout()方法。在onLayout方法里他们应该调用他们子元素的layout方法。

以上是layout方法的注释,在很多时候源码的注释=api文档,所以推荐各位经常阅读api文档。毕竟别人解析的再好,也是别人的,不如自己去阅读一手的资料,看看写源码的人给我们的一些建议。

稍微歪了一下题,接下来看看layout方法的源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}

int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;

boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;

ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}

mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}

以上还是有很多代码理解不能,不过还好跟着书走一遍好了,代码中会通过判断layoutMode(大部分情况下都是返回false),最后通过setFrame方法来设置View四个顶点的位置。四个顶点一旦确定,那么View在父容器中的位置也就确定了。接着会调用onLayout方法,在ViewGroup里onLayout就是个抽象方法,找个实现的子类来看看,以下是LinearLayout的onLayout:

1
2
3
4
5
6
7
protected void onLayout(boolean changed, int l, int t, int r, int b) {
if (mOrientation == VERTICAL) {
layoutVertical(l, t, r, b);
} else {
layoutHorizontal(l, t, r, b);
}
}

从字面上来看就是根据LinearLayout的orientation来执行相应的layout,看一下layoutVertical方法的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
void layoutVertical(int left, int top, int right, int bottom) {
final int paddingLeft = mPaddingLeft;

int childTop;
int childLeft;

// Where right end of child should go
final int width = right - left;
int childRight = width - mPaddingRight;

// Space available for child
int childSpace = width - paddingLeft - mPaddingRight;

final int count = getVirtualChildCount();

final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;

switch (majorGravity) {
case Gravity.BOTTOM:
// mTotalLength contains the padding already
childTop = mPaddingTop + bottom - top - mTotalLength;
break;

// mTotalLength contains the padding already
case Gravity.CENTER_VERTICAL:
childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
break;

case Gravity.TOP:
default:
childTop = mPaddingTop;
break;
}

for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i);
if (child == null) {
childTop += measureNullChild(i);
} else if (child.getVisibility() != GONE) {
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight();

final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();

int gravity = lp.gravity;
if (gravity < 0) {
gravity = minorGravity;
}
final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
case Gravity.CENTER_HORIZONTAL:
childLeft = paddingLeft + ((childSpace - childWidth) / 2)
+ lp.leftMargin - lp.rightMargin;
break;

case Gravity.RIGHT:
childLeft = childRight - childWidth - lp.rightMargin;
break;

case Gravity.LEFT:
default:
childLeft = paddingLeft + lp.leftMargin;
break;
}

if (hasDividerBeforeChildAt(i)) {
childTop += mDividerHeight;
}

childTop += lp.topMargin;
setChildFrame(child, childLeft, childTop + getLocationOffset(child),
childWidth, childHeight);
childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);

i += getChildrenSkipCount(child, i);
}
}
}

在遍历子元素之前会先初始化childTop,接着遍历子元素,在处理之后会调用setChildFrame方法来为子元素指定对应的位置,而clipTop的值会不断的增大,这意味着之后的元素会被放到靠下的位置,这和vetical的LinearLayout符合。setChildFrame()中会调用子元素的layout,之前分析过layout方法会为自身和自身的子元素确定位置和尺寸信息。如果这个child也有子元素,那么就会递归调用onLayout而子元素的子元素又会调用layout方法……子子孙孙无穷尽了。玩笑,递归肯定有出口的,那就是最里层的元素。如此处理之后,整个View树就完成了layout过程。

draw

简单的来说draw就是将view绘制到屏幕上。在调用这个方法之前必须完成onlayout的过程。在自定义view的时候实现onDraw而不是重写draw。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/

// Step 1, draw the background, if needed
int saveCount;

if (!dirtyOpaque) {
drawBackground(canvas);
}

// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);

// Step 4, draw the children
dispatchDraw(canvas);

// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}

// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);

// we're done...
return;
}

这个源码的注释还真是详细……主要的流程都已经在源码中标注了出来这里就不做过多的解释了。

  • 画背景
  • 有必要的话保存画布层级
  • 画view的内容
  • 画子元素
  • 有必要的话画边缘恢复层级
  • 画装饰

到这View的工作流程暂时就过了一遍了,终于为自定义View扫清了一个障碍,不过自定义View还需要更多的练习,光知道原理是没什么用的,还要回用合适的工具、方法来构建出自己想要的东西。