写在前面 想看的东西太多,时间总是太少~ 好了,先甩个锅给时间不够,然后开始Java重造,抱歉的是可能有些东西我不会讲的太详细。对了,最近看了同学iamxiarui 的文章。
容器 在日常撸code的过程中,很多时候我们都需要在运行时去创建新的对象。在此之前,我们可能不知道所需对象的数量甚至连类型都不知道,所以我们需要一个能在运行时保存对象引用的玩意。事实上数组是保存一组对象的最有效的方式,但是很多时候我们也不知道我们需要保存的对象的数量是多少,所以数组长度固定这一限制会让我们在实际应用中受到非常多的限制。不过好在Java提供了容器来帮我们搞定这些问题。首先上一个经典的容器图谱来理解一下~
当然了关于数组有大小限制这个问题,也是可以解决的。我们先申请一个固定长度的数组,每当有元素向里面添加的时候就判断一下,当前数组是否已经满了,如果不满则直接添加进去,如果满了就按照** 一定策略 申请一个新大小的数组,将原来数组元素全部移至新数组。当数组空元素过多时,可以按照 一定策略 **缩小数组长度,这个策略取决于你的需求和应用场景。
容器&泛型 通常我们在使用容器的时候,需要的是一个类型统一的容器,即如果我插入了一个猫元素,那么我绝对不希望一只蟑螂被插入进去。我需要的是一个“猫”的容器而不是其他的,在Java SE5之前容器就存在着能向“猫”的容器中插入“蟑螂”的问题。但是说实话,《Thinking in java》作者也说了,在泛型没有出来之前,程序员会经常犯这种错误吗?不见得,在这种场景下泛型只是将错误提前在编译期就告知用户。但是在没有泛型之前,一个代码风格良好的写法应该是:
1 List cat = new ArrayList();
如此明显的一个cat集合你会插入什么其他奇奇怪怪的东西吗?所以说泛型之于容器是类型安全,但是泛型出现更重要的一个目的是 ** 让程序员编写更加通用的代码 **。
上面的话可能说的有些繁琐,请容我再整理一下:在很多实用容器的场景中,我们希望在未使用容器钱,容器容纳类型不确定,但是在放入一个类型后,我们只能使用该类型,泛型非常适合应用在这个场景。使用泛型可以让运行期的错误在编译器就被阻止。下面来个简单的例子来说明一下:
1 2 3 4 5 6 7 List<String> strList = new ArrayList<String>(); strList.add(1 ); List anotherList = new ArrayList(); anotherList.add(1 ); anotherList.add("cat" );
让我们用更直观的形式看一下这样操作的的结果:
很明显使用泛型能够有效的避免将错误类型对象放置到容器中,但是关于泛型的使用不仅于此,更多的讨论放到文末。
迭代器 在《Thiniking in Java》中说到,任何容器类,都必须有某种方式可以插入元素并将它们再次取回(当然在某些书中你可能听说过bag这种只放入的容器,但是现在无需纠结这些东西)。
1 2 3 4 5 6 7 8 9 10 List<Integer> integerList = new ArrayList<Integer>(); for (int i = 0 ; i < 10 ; i++) { integerList.add(i); } Iterator<Integer> i = integerList.iterator(); while (i.hasNext()) { Integer j = i.next(); System.out.println("i-->" + j); }
以上是一个存放了0-9个值的集合,现在我们利用迭代器打印每个元素的值,先结果如下:
LinkedList 其实我还有很多没提到的东西,但是这是初探容器啊肯定还会有再探容器啊
Java里的容器我用的比较多的大概就是HashMap、ArrayList和LinkedList,其中ArrayList用的最多。其实ArrayList和LinkedList都可以被理解为“链表”,只不过LinkedList更偏向于我们所熟知的“指针链表”,而ArrayList可以将之理解为内部是数组的链表。说实话,数组自带链子啊~
好了看上面的标题也该知道,我是不打算在这对其他的容器做更多的介绍的,大标题叫初探容器,说明我还会有再探容器的,那时再做更详细的介绍。最近看到一个有趣的东西,你输入一个”(1+(2-1))”这种格式的算是,可以用栈算出来,于是乎自己用jdk自带的LinkedList封装了一个stack,把那玩意做了出来,但是感觉不爽,因为链表用的是现成的,简单的封装也没什么难度。我不管我就要从Node开始搞一个Java的“指针链表”。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 package thinking.Generator.other;import java.util.NoSuchElementException;public class LinkList <T > { int size = 0 ; Node<T> first; Node<T> last; public LinkList () { } public boolean add (T t) { insertToLast(t); return true ; } private void insertToLast (T t) { Node<T> n = last; Node<T> newNode = new Node<T>(n, t, null ); last = newNode; if (n == null ) first = newNode; else n.next = newNode; size++; } public T getLast () { Node<T> n = last; if (n == null ) throw new NoSuchElementException(); return n.item; } public T get (int index) { return node(index).item; } Node<T> node (int index) { if (index < (size >> 1 )) { Node<T> x = first; for (int i = 0 ; i < index; i++) x = x.next; return x; } else { Node<T> x = last; for (int i = size - 1 ; i > index; i--) x = x.pre; return x; } } public T remove (int index) { checkNodeIndex(index); return unlink(node(index)); } private void checkNodeIndex (int index) { if (!isNodeIndex(index)) throw new IndexOutOfBoundsException("Index:" + index + "Size:" + size); } T unlink (Node<T> x) { T value = x.item; Node<T> next = x.next; Node<T> prev = x.pre; if (prev == null ) { first = next; } else { prev.next = next; x.pre = null ; } if (next == null ) { last = prev; } else { next.pre = prev; x.next = null ; } x.item = null ; size--; return value; } public boolean isNodeIndex (int index) { return index >= 0 && index < size; } public void travelList () { Node travelNode = first; if (travelNode == null ) return ; while (travelNode.next != null ) { System.out.println(travelNode.item); travelNode = travelNode.next; } } public int size () { return this .size; } private static class Node <T > { T item; Node<T> next; Node<T> pre; Node(Node<T> prev, T element, Node<T> next) { this .item = element; this .next = next; this .pre = prev; } } public static void main (String[] args) { LinkList<String> strList = new LinkList<>(); strList.add("str1" ); strList.add("str2" ); strList.add("str3" ); strList.add("str4" ); strList.travelList(); } }
我这实现了一个双向链表,操作起来方便一点,实现的时候参考了一下Java的LinkedList。底下的main()函数仅仅作为测试之用。接下来简单的封装一下,将LinkedList封装为一个栈:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 package thinking.Generator.other;import java.util.NoSuchElementException;@SuppressWarnings("unused") public class MyStack <T > { private LinkList<T> stack; public MyStack () { stack = new LinkList<T>(); } public T pop () { if (stack.size() > 0 ) { return stack.remove(stack.size() - 1 ); } else { throw new NoSuchElementException(); } } public boolean push (T t) { return stack.add(t); } public T peek () { return stack.getLast(); } public boolean isEmpty () { return stack.size == 0 ; } public int size () { return stack.size(); } }
好了前期工作准备好了,那我们来看一下该怎么算。一般的算术表达式我们可以通过二叉树的遍历来将其改造成中缀表达式从而用栈来算出其结果,但是上面的算式不用那么麻烦,因为有左右括号,按照以下规则预算就成了:
将操作数压入操作数栈
将运算符压入运算符栈
忽略左括号
在遇到右括号时,弹出一个运算符,弹出所需数量的操作数,并将运算符和操作数的运算结果压入操作数栈
好了算法也有了,搞起来!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 public static void main (String[] args) { MyStack<Double> integerStack = new MyStack<>(); MyStack<Character> opStack = new MyStack<>(); String integers = "0123456789" ; String a = "(1+((2+3)*(4*5)))" ; char [] b = new char [a.length()]; for (int i = 0 ; i < b.length; i++) { b[i] = a.charAt(i); } for (char i : b) { if (contain(integers, i)) { integerStack.push(Double.parseDouble("" + i)); } else if (i == '+' || i == '-' || i == '*' || i == '/' ) { opStack.push(i); } else if (i == '(' ) { } else if (i == ')' ) { double opt1 = integerStack.pop(); double opt2 = integerStack.pop(); double opt3 = 0.0 ; char operator = opStack.pop(); if (operator == '+' ) { opt3 = opt1 + opt2; System.out.println(opt1 + "+" + opt2 + "=" + opt3); } if (operator == '-' ) { opt3 = opt1 - opt2; System.out.println(opt1 + "-" + opt2 + "=" + opt3); } if (operator == '*' ) { opt3 = opt1 * opt2; System.out.println(opt1 + "*" + opt2 + "=" + opt3); } if (operator == '/' ) { opt3 = opt1 / opt2; System.out.println(opt1 + "/" + opt2 + "=" + opt3); } integerStack.push(opt3); } } System.out.println("the result is:" + integerStack.peek()); } public static boolean contain (String s, char a) { char [] str = new char [s.length()]; for (int i = 0 ; i < s.length(); i++) { str[i] = s.charAt(i); } for (char i : str) { if (a == i) return true ; } return false ; }
看下结果~
结果是不是很有趣~好了这次的复习就先到这,等到下次再探容器的时候再好好的了解一下容器。